Name:		1

2
How to Build an Agent Model
We have seen the “cooperation” model and have taken a look at its code. How did that code come to be? In other words, what are the steps in building and using such a model?
Sketch Problem
The classical definition of the tragedy of the commons is that a group of individuals each have access to a resource. If each exercises restraint, there is a sustainable amount for all to enjoy. If an individual takes more, however, it won’t be noticed by others and it won’t be enough to do any real harm to the community. Thus, it is rational for the individual to take more since (1) she benefits and (2) it won’t hurt others and (3) no one will notice. If all group members are rational, all will take more and the system will collapse. Thus, individual rationality leads to collective irrationality.
The take-away is that for certain kinds of goods (known as “public goods”) individual rationality does not lead to collective welfare the way Adam Smith said it would. Associated with this is the conclusion that for certain kinds of goods a community requires social or political structures or institutions to ensure that members collectively produce what is collectively beneficial.
One way to address the problem would be to socialize or “breed” members to act in a more pro-social manner. Another would be to build some institutions (policies, laws, etc.) that would get agents to do so regardless of their inclinations. What if some members of the group are, by disposition, less likely to take the selfish route? Can a group of unselfish individuals survive in a population of selfish ones? Can unselfish “teach” the selfish to be more community regarding?
Keeping the KISS principle in mind, let’s say we have a population of cows and some of them are greedy and some are cooperative. Greedy cows eat whatever is in front of them and then move around to look for more. Cooperative cows know that grass grows back faster if you don’t munch it down to the ground. This means more moving around before one is satiated, but it’s good for the group. The grass grows back, but more slowly if it’s been munched to the ground or maybe not at all.
Specify Simplest Version of Model in More Detail
Two kinds of cows. These are turtles. They move around. They eat grass on the patch where they stand. Patches grow grass, faster if they are above some minimum level. Grass does not grow forever – reaches some max-grass-height.
Make Even More Simple Version and Test It
Create a patches variable for how much grass. Change color based on amount of grass. Let’s start with very simple set-up procedure:
patches-own [how-much-grass]

to setup
 ca
 ask patches
 [set how-much-grass random 10
 set pcolor scale-color green how-much-grass 0 10
]
end
I type setup in the command line box and type return
[image:]
[image:]I notice something that I want to fix: the patches with lots of grass are white rather than just very green. If I look up the scale-color command I find that it returns a color in a particular hue (here green) between black and white depending on where the value I’m representing is between a min and a max. Here I’ve told NetLogo that the minimum is zero and the max is ten. The numbers come from random numbers between 0 and 10. So, the highest random numbers get white as their color. If I tell scale-color to scale the number with twice the maximum possible as the max of the scale then the real max (half this number) will correspond to bright green as shown in the color chart here.
Making this change eliminates the white patches in the model. Next, to make things a little easier to test, I should create a button to run the setup procedure. At the interface window, click on the pull down button for adding interface items and create a button for the procedure setup. It will be an observer procedure. Test to make sure it works and save your work.
[image:]Next, let’s make some cows and place them randomly on the meadow. In English what we want is a procedure that goes like this
to setup-cows
 create the cows
 move them to a random location
end
Even before we have figured out just how to do this, we can put place holders into our setup procedure like this:
patches-own [how-much-grass]
to setup
 ca
 ask patches
 [set how-much-grass random 10
 set pcolor scale-color green how-much-grass 0 20
]
 setup-cows
end

to setup-cows
 ;;create some cows
 ;;put them in random places on the patches
end
Add this little bit of do-nothing code and verify that things work as before.
Now I look up in the dictionary how to create turtles (the basic command is create-turtles or crt and the syntax is
crt number [commands]
and the command for telling a turtle where to go is
setxy number number
where number is a patch coordinate. Usually I’d have to pick these out knowing what the size of the patch world is but NetLogo provides a convenient command random-xcor which selects a random number between the lowest x coordinate (the left hand side of the world; it turns out there is a built-in variable called min-pxcor) and the highest (the right hand side). And random-ycor is defined similarly. Thus I can randomly place a turtle on the board with
setxy random-xcor random-ycor
So, let’s create 20 cows and spread them out.
to setup-cows
 crt 20 [setxy random-xcor random-ycor]
end
These don’t look like cows. Let’s use the set shape command: shape is a built-in turtle variable that holds a string that names the turtle’s current shape. Here are some examples of available shapes:

[image: screen shot]default, airplane, arrow, box, bug, butterfly

car, circle, circle 2, cow, cylinder, dot

face happy, face neutral, face sad, fish, flag, flower

house, leaf, line, line half, pentagon, person

plant, square, square 2, star, target, tree

triangle, triangle 2, truck, turtle, wheel, x

We’ll use “cow”:
to setup-cows
 crt 20 [setxy random-xcor random-ycor set shape “cow”]
end
But these cows are too small. Let’s use the size variable (another built-in turtle variable) to make them bigger. Try out different sizes on the command line. 5 too big, 1 too small, 2 about right. So we add
set size 2
to our setup-cows procedure.
Back to THINKING about our Model
Remember we want to have two types of cows: greedy and cooperative. The easiest way to do “types of agents” in NetLogo is to give the turtles a breed. Look up “breed” in the NetLogo dictionary. A breed is an agentset. When we say “ask turtles [commands]” or “ask patches [commands]” we are talking to an agentset – all the agents of a particular type. The breeds command lets us specify other sets of agents and treat them as a group.
We create or define breeds with the “breed” command which is placed at the top of a program, just like “globals” and “turtles-own” and “patches-own.” In computerese, these commands are sometimes called “declarations.”
[bookmark: breed]breed

breed [<breeds> <breed>]
This keyword, like the globals, turtles-own, and patches-own keywords, can only be used at the beginning of the Procedures tab, before any procedure definitions. It defines a breed. The first input defines the name of the agentset associated with the breed. The second input defines the name of a single member of the breed.
Any turtle of the given breed:
	is part of the agentset named by the breed name
	has its breed built-in variable set to that agentse
And so we use
breed [cooperative-cows cooperative-cow]
breed [greedy-cows greedy-cow]
We’ll set half the turtles to be each breed. The simplest way to do this is to roll the proverbial die:
ifelse random 100 > 50
 [set breed cooperative-cow set color pink]
 [set breed greedy-cow set color blue]
Recall that at the start we said we wanted our cows to eat, move, and reproduce. How do we want to do these things? Let’s make some notes for ourselves:
When we eat, our energy level goes up, the grass gets shorter.
When we move, we use up some energy.
We only reproduce if we have enough to eat.
Reproduction takes energy.
We produce young that are just like ourselves.
Greedy cows eat grass right down to the root.
Cooperative cows check the height of the grass and only eat if it is above a particular level.
Cows that run out of energy die.
So, I sketch out the following pseudo-code:
to go
cows move
cows eat
cows reproduce
end

to eat
if you are greedycow eatgreedy
if you are cooperativecow eatcooperative
end

to eatgreedy
chomp
make grass shorter
add energy
end

to eatcooperative
if grass tall enough chomp, gain energy, grass gets shorter (cf. eat greedy – 1 line or 3 – same)
end

to move
pick a direction and take a step; use up some energy
end

to reproduce
if enough energy, spawn a new cow; use up some energy
end
Sometimes it makes sense to put this pseudocode into your procedures tab with semicolons to “comment out” all the text so that it does not get flagged as an error. Some of the procedure names can be left in as they are. Here’s what this might look like:
to go
ask turtles
 [move
 eat
 reproduce]
end

to eat
 ;if you are greedycow eat-greedy
 ;if you are cooperativecow eat-cooperative
end

to eat-greedy
 ;chomp
 ;make grass shorter
 ;add energy
end

to eat-cooperative
 ;if grass tall enough chomp, gain energy, grass gets shorter
end

to move
 ;pick a direction and take a step; use up some energy
end

to reproduce
 ;if enough energy, spawn a new cow; use up some energy
end
Another strategy, though, is to go through another round of pseudo-code with some more comments to the self about how we might plan on doing things.
to go
cows move
cows eat
cows reproduce
end

to eat
if your breed is greedycow eat-greedy
if your breed is cooperativecow eat-cooperative
end

to eat-greedy
if the grass on this patch is more than zero high then (patches need a height variable)
 make grass shorter
 add energy (turtles need an energy variable)
end

to eat-cooperative
if grass tall enough chomp (compare to a global variable (slider) where we set this limit
 make grass shorter
 add energy
end

to move
set a random heading
take a step (maybe make stepsize a global slider variable?)
use up some energy (make amount of energy dependent on stepsize?)
end

to reproduce
if enough energy (above a global (slider?) threshold)
 spawn a new cow
 use up some energy (how much might be dependent on global variable (slider)
end
I’ll do a global variable and slider inventory based on what I’ve written:
Step size : stride
Energy per reproduction: energy-cost-of-reproduction
Grass height where cooperative cows stop: stop-eating-grass-height
Energy variable for turtles
Energy it costs to take a step: metabolism-per-step
Height variable for grass (already have: how-much-grass – maybe change name to “height”?)
This tells me to go this route:
Create sliders on the interface tab for
stride-size (0.1 to 2 by 0.1?);
energy-cost-of-reproduction (0 to 200?),
stop-eating-grass-height (1 to max-grass-height);
energy-cost-per-stride (energy cost per step 0 to 100?)
And
turtles-own [energy]
to eat
How do we implement the logic “if you are a cooperative cow, eat cooperatively”? We want to test the breeds of our turtles. If the turtles are executing the code, all we have to do is say “if your breed = cooperative-cows” (each cow asks the question about its own breed variable)
 (
Cooperative?
Eat cooperatively
Eat
greedily
yes
no
)
 if breed = cooperative-cows
 [
 eat-cooperative
]
Next we want to add a branch for greedy cows:
 if breed = greedy-cows
 [
 eat-greedy
]
It turns out that we can leave ourselves some room to maneuver (that is, modify the program later) if we implement the following logic, a slight variation of the above.
 (
Cooperative?
Eat cooperatively
Greedy
?
Eat
greedily
yes
yes
no
)
to eat
 ifelse breed = cooperative-cows
 [eat-cooperative]
 [if breed = greedy-cows
 [eat-greedy]
]
end
to eat-greedy
As long as there is some grass, we eat it.
 (
grass > 0
?
decrease grass height
yes
increase my energy
)
if height > 0
 [set height height – 1 ;;NOTE: patch vars understood to refer
 set energy energy + 1 ;; to turtles & patch vars to patches
]
But now that I have an energy variable, I should remember to initialize it (set it to some non-zero value for the initial cows). I do this in the setup procedure. For now I’ll just make it 2.
to eat-cooperative
if height > stop-eating-grass-height
 [set height height – 1 ;; of the grass here
 set energy energy + 1 ;; of this turtle
]
Rather than assuming that the amount of energy we get from eating a unit of grass is one unit (the energy + 1 above), let’s create a slider that tells us how “nutritious” the grass is (we’ll call it “grass-energy”). We’ll allow the energy to go from 0 to 200 per feeding. Our code will thus look like this:
if height > stop-eating-grass-height
 [set height height – 1
 set energy energy + grass-energy
]
to move
Remember that our pseudocode is this:
set a random heading
take a step (maybe make stepsize a global slider variable?)
use up some energy (make amount of energy dependent on stepsize?)
We can do this with this code[footnoteRef:2] [2: 	I am thinking that maybe this variable should be named “per meter” since we have a stride length variable and what we are after is how much work moving around is. A longer stride takes more energy because it takes energy to move a particular distance.]

set heading random 360
fd stride-size
set energy energy – energy-cost-per-stride * stride-size
to reproduce

to reproduce
if enough energy (above a global (slider?) threshold)
 spawn a new cow
 use up some energy (how much might be dependent on global variable (slider)
end

to reproduce
 if energy > energy-level-for-reproduction
 [set energy energy - energy-cost-of-reproduction
 hatch 1 []
]
end
Cow Death and Grass Growth
We haven’t thought yet about when cows die and how the grass grows back. An obvious approach to the former is that cows die when their energy reaches zero. As for grass growth, we can make it grow at a fixed rate or we could set a slider called “grass-growth-rate” so we can test different levels of replenishment.
; grass-growth-rate Slider (1-5) tells how fast grass grows
In our go procedure we’ll have this line to kill off old, tired turtles:
if energy < 0 [die]
And we’ll create a new procedure grow-grass. The logic is
If the grass is less than zero it’s roots have been eaten and it is not growing back.
Otherwise, grass grows by one unit but never taller than max-grass-height

to grow-grass ;; patch procedure
 ifelse (height > 0)
 [set height height + 1]
 if (height > max-grass-height)
 [set height max-grass-height]
]
end
GO
Our go procedure will ask the turtles to move, eat, and reproduce and the grass to grow:
to go
 ask turtles
 [move
 eat
 reproduce
]
 ask patches
 [grow-grass]
end
I create a button for the go procedure and make it a “forever” button.
Trying It Out
I turn it on and it runs but my cows don’t seem ever to be dying. This is because I forgot to include the dying command above. Typical. But over a few runs I see that the system behaves strangely. Either I just get more and more blue cows with no equilibrium number or else all the cows die out real quickly. This means I have not yet “tuned” my model – that is, adjusted the parameters to ranges where “realistic” system behavior happens. So, I have to adjust the numbers. Here is a set that provides some interesting behavior:
	energy-cost-of-reproduction
	energy-cost-per-stride
	energy-level-for-reproduction
	grass-energy
	max-grass-height
	percentage-cooperative-at-start
	stop-eating-grass-height
	stride-size

	40
	20
	80
	50
	25
	50
	8
	0.1

Extensions
We should permit different proportions of cooperative and greedy at the start. To do this we create a slide called “percentage-cooperative-at-start” and use this in the random assignment of breed in our setup procedure.
 ifelse random 100 < percentage-cooperative-at-start
 [set breed cooperative-cows set color pink]
 [set breed greedy-cows set color blue]
We should tie moving around to lack of food where we are.
Add grass regeneration probability. First, make it random (a patch that has become barren has a small but finite chance of sprouting some grass). Later, make it depend on how near the barren patch is to a patch with grass on it.
Export Data to Excel

Experiments
Use either your own or my or the “cooperation” model that comes with NetLogo. Play with system until you are familiar with its behavior as you vary different parameters. Then do an experiment to nail down the effects of variation in one parameter around an interesting value. You should do a minimum of 5 values of the parameter, 6 runs, minimum 500 steps each.
Example. For a fixed set of parameters, let’s vary the maximum height grass grows to. This could be seen to be examining effects of more and less finite resources on community survival. Varying regeneration rate might do something similar.
Set the other parameters to reasonable values (ones you know produce reasonable behavior). Engage the Behavior Space option under the Tools menu in NetLogo to do the experiment.
Another Thing I Learned
I changed the grow-grass routine so that it would grow as a function of how much was there rather than just adding one unit per time period. I did this by changing
 set height height + 1
to
 set height height * 1.1
One effect of this was to cause diffused grass (the little seeds that get spread by the wind using the diffuse command) to grow very very slowly (they might well be small to start with so 110% of them is just too small for new grass to ever grow in barren areas). The result was that the greedy cows made a sort of environment destroying vanguard eating everything and moving one leaving destruction behind. YES this does model certain kinds of behavior, but not what I was after.
Puzzlers/Assignments
Identify two real world situations that have nothing to do with bovine feeding habits or Poaceae that can be modeled more or less by the same logic as we have here.
Example. Let’s say there are two kinds of people, those who take advantage of social company to the point of exhausting everyone’s patience

Experiments
Mobility How much energy it takes to move around
What happens if you raise energy per stride to a high value (say 20)? This corresponds to a situation where movement is expensive. I tried this, turned the thing on and all the cows died out right away. What’s going on? Answer: they take a single stride and it costs them more than their initial energy allotment (which I hardwired at 2). Solution: start cows off with enough energy to go a few strides. One way to do this would be to use the slider value : set energy energy-cost-per-meter * 5. In any case, your job is to try to understand how the energy that it takes to move around affects the behavior of the system.
Nutrition Value of Grass
How does the quality of the grass affect things? Does system behavior change depending on relative nutritional value of the grass? What real world phenomenon does this begin to approach? You might think about how one would add seasonal dynamics to the model by allowing this to vary over the course of a model “year.”
Natural Replenish Rate (how fast grass grow, how fast it spreads back onto barren areas)
We used the diffuse command to get grass to grow in barren areas. Factors like climate and soil condition and wind and the species of grass might affect how quickly grass spreads and grows anew. Tweak the model and do some experiments to assess this factor. What real world phenomena does it suggest?
Cost of Reproduction
How does the amount of energy expended in reproduction affect matters? We can imagine one extreme (the salmon plan?) where giving birth kills the parent. At the other extreme, reproduction is free. How do we think variation in this will affect the system?
Threshold of Reproduction
The energy threshold for reproduction is a sort of surrogate for age. How does making the cows take longer before they can reproduce affect things (obviously, it might slow the overall process down since new hungry cows don’t appear as often, but what else?). Play with the simulation until you know this phenomenon well and then do some experiments to try to quantify things.
Globalization
Let’s think about the effect of stride-size and cost per unit of movement together. What happens when greedy cows can roam more widely more cheaply? Can we use this as a model for anything associated with globalization?
Smarter Cows Move Toward Tall Grass
We’ve added code that allows the hungry cow to turn direction toward the neighbor patch with the greatest amount of grass on it. We can make them do this with
set heading towards max-one-of neighbors [height]
We can make them do this either when they have exhausted the grass in front of them or without the “wait until you’ve exhausted what’s in front of you” to simply keep them moving toward the tallest grass. We might want to put a switch or two in to control this (one could be move all the time vs move only when you exhaust what’s in front of you and one could be move random or move toward tallest grass).
Think up some experiments with which you can study the effects of this. What kinds of real world phenomena might we be modeling?
Adding Policy/Law/Institutions/Norms
Maybe they are less likely to eat if the other breed is already on that patch? Or maybe we can think of some other policies that might make sense (without changing the nature of the two breeds).
Add Cow-Cow Interaction
What if cows interacted when they met cows of the other breed? Or maybe there’s a chance that one or the other is aggressive and chases the other away.

Tying Movement to Exhausting Local Resources
A very reasonable extension to the model would be to allow cows to stay put unless they had exhausted the grass in front of them. A fancier alternative would make them do a little bit of moving around before they had exhausted what’s nearby and more moving when they had exhausted the local supply. For now, I’ll just do the former of these.
What I want to do, expressed in pseudo-code, is:
If I’m cooperative and have eaten as much of this patch’s grass as I should, then move. If I’m greedy and have eaten this patch to the ground then move.
I can implement this by changing the move command in the go procedure to the following
 if ((breed = cooperative-cows and
 height <= stop-eating-grass-height)
 or
 (breed = greedy-cows and height <= 0))
 [move]
Nomads vs. Farmers?
Can you imagine using this model to look at interactions between nomadic and agricultural civilizations?
How to Make a Phase Plot
A frequent requirement of systems analysis is to plot the trajectory of the system through phase space over time. Here we can define the phase of the system as the ordered pair given by the number of cooperative cows and the number of greedy cows.
Very Interesting Case
	energy-cost-of-reproduction
	energy-cost-per-meter
	energy-level-for-reproduction
	grass-energy
	max-grass-height
	percentage-cooperative-at-start
	regrowth-potential
	stop-eating-grass-height
	stride-size

	40
	15
	70
	30
	20
	75
	0
	8
	0.3

[image:]
We get near extinction of greedy just after the cooperative disappear but then they rebound as resources recover while the population is low. Population then shoots up and crashes but not back to zero. Then it oscillates around 1700 with swings of 500 or so each way every 50-75 periods. This is an interesting feast or famine pattern.
Grass Reseeds Itself
I would like to make it so that grass is more likely to sprout on barren land when it is near growing grass. This does not make the model more general – commons problems in the abstract – but rather more particularly – it really is about grass and resources that “re-seed” themselves spatially. That’s OK – I just want to make a mental note for myself that this extension of the model may not make it more general.
OK, so how to do it. In pseudocode, I want this:

If a patch is barren it’s probability of sprouting new grass is proportional to the distance to growing grass.
I recall that NetLogo has commands like the following
Distance to an agent
Minimum
With
And so I can imagine a command like this
Distance-to-grass = minimum distance-to patch with grass
distance agent
min list
agentset with [reporter]
n-values size [reporter]
But then I find the diffuse command:
diffuse
diffuse patch-variable number
Tells each patch to share (number * 100) percent of the value of patch-variable with its eight neighboring patches. number should be between 0 and 1. Regardless of topology the sum of patch-variable will be conserved across the world. If a patch has fewer than eight neighbors the remainder stays on the patch at the edge of the world.
Note that this is an observer command only, even though you might expect it to be a patch command. (The reason is that it acts on all the patches at once -- patch commands act on individual patches.)
So maybe I can just let grass diffuse a little every time it regrows just by adding (I’m guessing at the 20 percent for amount to diffuse – can’t think of an argument about why it should be any particular value so let’s just try that out).
diffuse height 20

Miscellaneous Hints
If you end up with a slow model because it has tens of thousands of cows you are probably making the grass to rich and moving and giving birth too easy.

Name:

PPOL2256 Lab

	26	How to Build an Agent Model.docx
Cooperation Model
[image:]
turtles-own [energy]
patches-own [grass]

breed [cooperative-cows cooperative-cow]
breed [greedy-cows greedy-cow]

to setup
 ca
 setup-cows
 ask patches
 [set grass max-grass-height
 color-grass
]
 do-plotting
end
to setup-cows
 set-default-shape turtles "cow" ;; both breeds
 cct initial-cows
 [setxy random-xcor random-ycor
 set energy metabolism * 4
 ifelse (random-float 1.0 < cooperative-probability)
 [
 set breed cooperative-cows
 set color pink
]
 [set breed greedy-cows
 set color blue
]
]
end

to go
 ask turtles
 [move
 eat
 reproduce]
 ask patches
 [grow-grass
 color-grass]
 do-plotting
end

to reproduce ;; turtle procedure
 if (energy > reproduction-threshold)
 [set energy energy - reproduction-cost
 hatch 1 []]
end

to grow-grass ;; patch procedure
 ifelse (grass >= low-high-threshold)
 [if (high-growth-chance >= (random-float 100))
 [set grass grass + 1]
]
 [if (low-growth-chance >= (random-float 100))
 [set grass grass + 1]
]
 if (grass > max-grass-height)
 [set grass max-grass-height]
end

to color-grass ;; patch procedure
 set pcolor scale-color green grass 0
 (2 * max-grass-height)
end

to move ;; turtle procedure
 rt random-float 360
 fd stride-length
 set energy energy - metabolism
 if (energy < 0) [die]
end

to eat ;; turtle procedure
 ifelse breed = cooperative-cows
 [
 eat-cooperative
]
 [
 if breed = greedy-cows
 [eat-greedy]
]
end

to eat-cooperative ;; turtle procedure
 if (grass > low-high-threshold)
 [
 set grass grass - 1
 set energy energy + grass-energy
]
end

to eat-greedy ;; turtle procedure
 if (grass > 0)
 [
 set grass grass - 1
 set energy energy + grass-energy
]
end

to do-plotting
 set-current-plot "Cows over time"
 set-current-plot-pen "cooperative"
 plot count cooperative-cows
 set-current-plot-pen "greedy"
 plot count greedy-cows
end

[image:]

Will Being a Better Good Person Save You or the World?[footnoteRef:3] [3: 	Note: I’ve included here a bit more pedagogical material (especially about how I did things (with Excel, for example)) than you need to. Tell the reader enough that they can duplicate your model to see if it performs for them the way you said it performed for you. Just how you manipulated your data does not need to be documented down to the level of Excel commands. AND, in this actual footnote, you probably want to put your contact information and any acknowledgements.]

Dan Ryan
Mills College
Introduction
If the world consists of some agents who are oblivious of hurting the environment and others who exercise some self-restraint, does the amount of self-restraint matter? If we have a mix of controlled consumers and ravenous consumers of resources, does it matter much if the controlled consumers are “being good” at higher or lower levels? If some of us try to save energy, for example, while others make no efforts at all, and, in fact, are happy to use up any energy we save, does how frugal we are matter? Won’t the others simply consume more and crowd us out? Or will the energy gluttons do themselves in while the rest of us survive in our eco-friendly enclaves? What I’d like to do is use a simple cooperative/greedy cow model to look at the effects of degrees of self-denial on the part of cooperative cows on their long term survival as well as that of the system.
Background
Suppose the world consists of two types: greedy agents who consume all they can even if it means exhausting a local supply of a resource and frugal agents who set a limit and when this much of local resource is consumed they invest energy in moving around and looking for nearby resources that are currently more plentiful.
One variable in such a world would be just how conservative the frugal agents are – that is, at what level of consumption do they back off and attempt to let the resource replenish itself. If these agents were the only ones in the world this would have some effect on their well-being but would likely preserve the resource. Unfortunately, they might not be able to control the movement and appetite of greedy agents. The purpose of this paper is to investigate the effects of changes in how conservative the frugal agents are under several different scenarios.
More to come.
Model
This research uses a variation on the “Cooperation” model developed by Wilensky (Wilensky 1998). Two breeds of cows live on a world covered by grass. Cows can eat, move and reproduce. One breed (cooperative) stops eating before reaching the roots and killing the grass. The other breed (greedy) eats right down to the ground. Grass grows back and spreads to barren areas. Cows move toward higher grass when they exhaust what is in front of them. Cows get energy from grass they eat and expend energy by moving and by reproducing.
Tuning the Model
Reality Checks
In order to adjust parameters so that the model produces more or less realistic behavior, we need to make a list of reality checks – common sense relations and behaviors that the make sense. [Sometimes we can spell these out at the start. Sometimes you have to live with a model for a spell before you think of some, even though they seem obvious once you think of them.]
Cows should eventually die – especially if they don’t eat enough to nourish their activity.
Reproduction should not be “free”
Reproduction should probably not be “salmon-like” – i.e., reproduction kills a cow.
Multiple runs of the model with different parameter combinations were carried out to identify “realistic” operating ranges. These were connected to reality and common sense as follows….
Reference Modes
To get my model set up, I specify some reference modes – behavioral patterns I expect under certain conditions. Here, I am expecting that it’ll be hard to get pink cows to survive long term in most cases (since the blue cows have no problem just moving in and clear cutting the fields the pink cows are being so careful not to overgraze)…. MORE TO COME
While working on a basic set of parameters to start with I notice that for the cooperatives to survive and maybe reach a steady state, they need to be able to break through the line of greedy cows that spreads out as those cows try to take over the world.
I play with parameters and find that if I make moving around really costly and grass really unnutritious (this corresponds to making life difficult) then I get things more like equilibrium
With long stride-length, we see a consistent behavior: the blue cows form a grass eating frontier and box in the pink cows forcing them out of existence in relatively short order. With a slightly longer stride length the pink cows don’t get completely surrounded and eliminated. Some “break through the line” of the blue cows though they are then shortly after all gone. At very short stride length the pink enclaves last a long time. With short stride length it does not look like ALL of the blues are working at annoying the pinks. The longer the stride, too, the more re-grown grass we seem to have “out there” behind the main clusters.

[image:] [image:] [image:]
Logic of the Experiment(s)
I will run an experiment in which the parameter stop-eating-grass-height varies from X to Y. I will run the experiment with the three different values of the stride-length variable. The smallest stride length corresponds to a highly unglobalized world – hungry cows who have exhausted local resources don’t look very far from home for new resources. The longest stride length …
Results
Here is the framework I set up in NetLogo’s behavior space (the graphic is for pedagogical purposes – you don’t need to include it). I’ve set it here to do ten runs, stopping at 2000 steps even if system has not stopped on its own. You can try different things along these lines. Don’t be stingy – the whole point is to let the computer do our work for us.
Fixed Parameters
["percentage-cooperative-at-start" 50]
["grass-energy" 1]
 ["max-grass-height" 50]
["grass-growback-rate" 4]
["energy-cost-per-meter" 150]
["energy-cost-of-reproduction" 200]
["energy-level-for-reproduction" 100]
Experimental Variable
["stop-eating-grass-height" 4 6 8 10]
Conditions Variable
["stride-size" 0.1 0.2 0.3]
[image:]

	BehaviorSpace Spreadsheet data (NetLogo 4.0)
	

	11/01/2007 20:14:47:718 -0700
	
	
	
	
	

	min-pxcor
	max-pxcor
	min-pycor
	max-pycor
	
	

	-16
	16
	-16
	16
	
	

	[run number]
	1
	1
	2
	2
	…

	percentage-cooperative-at-start
	50
	
	50
	
	

	grass-energy
	19
	
	19
	
	

	stop-eating-grass-height
	4
	
	4
	
	

	max-grass-height
	20
	
	20
	
	

	grass-growback-rate
	1
	
	1
	
	

	energy-cost-per-meter
	15
	
	15
	
	

	energy-cost-of-reproduction
	180
	
	180
	
	

	energy-level-for-reproduction
	100
	
	100
	
	

	stride-size
	0.1
	
	0.1
	
	

	[reporter]
	count cooperative-cows
	count greedy-cows
	count cooperative-cows
	count greedy-cows
	

	[final]
	1
	1476
	1
	1607
	…

	[min]
	1
	11
	1
	11
	…

	[max]
	1276
	1719
	1177
	1816
	…

	[mean]
	387.01237
	1195.2272
	182.86378
	1346.5525
	…

	[steps]
	888
	888
	1570
	1570
	…

	
	
	
	
	
	

	[all run data]
	count cooperative-cows
	count greedy-cows
	count cooperative-cows
	count greedy-cows
	

	1
	9
	11
	9
	11
	…

	2
	9
	11
	9
	11
	…

	3
	17
	20
	15
	22
	…

	4
	26
	31
	22
	33
	…

	5
	35
	41
	30
	42
	…

	6
	44
	49
	33
	52
	…

	…
	…
	…
	…
	…
	

For each run I have number of steps until one breed died out along with the various parameter settings and a few other numbers (total, average, min and max of each breed’s population). I take the top part of the table and copy and paste-transpose into a new worksheet. Then, after a little massaging, I have it in this form (next page). I summarize these as follows:

	
	
	Stop Height

	
	
	4
	6
	8
	10

	Stride-Length
	0.1
	1138.1
	671.3
	487
	352.1

	
	0.2
	619.7
	391.3
	226.8
	187.9

	
	0.3
	441
	230.3
	167.7
	138.2

What do I make of this? Two things. The pink cows survive a shorter time when they are “better” on their own (that is, when they stop eating earlier). They are, in a sense, the “chumps” of the situation. And, the more mobile the cows are, the faster the cooperative cows reach their demise. Notice that I ran the model with it stopping when the pink cows died. I did not investigate the fate of the blue cows after this. That’s another experiment for another day. Let me think for a moment, though, about what I might expect…MORE.
This suggests that the world won’t be saved by non-universal norms alone. MORE…
Appendix A NetLogo Model
Appendix B Data (not all!)

Processing My Data
I tell the behavior space to save my data in a spreadsheet. For this example, I tell it I don’t need to record data at every step, just at the end of each run. I tell it to record count cooperative-cows and count greedy-cows.
I then copy all the data (which is in a cases-in-columns format) and go to a new worksheet and paste-transpose to switch it to cases in rows. Each run has two lines. All the info is the same except on the far right where one has the greedy cow value and the other has the cooperative cow count.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P
	Q

	1
	[run number]
	grass-energy
	energy-cost-per-meter
	stride-size
	energy-level-for-reproduction
	grass-growback-rate
	percentage-cooperative-at-start
	energy-cost-of-reproduction
	stop-on-extinction?
	max-grass-height
	grass-self-seeding
	stop-eating-grass-height
	[steps]
	[initial & final values]
	coop

	2
	1
	20
	100
	0.1
	120
	0.4
	50
	100
	FALSE
	30
	1
	6
	2000
	count cooperative-cows
	1200

	3
	1
	
	
	
	
	
	
	
	
	
	
	
	2000
	count greedy-cows
	0

	4
	2
	20
	100
	0.1
	120
	0.4
	50
	100
	FALSE
	30
	1
	6
	2000
	count cooperative-cows
	228

	5
	2
	
	
	
	
	
	
	
	
	
	
	
	2000
	count greedy-cows
	76

	6
	3
	20
	100
	0.1
	120
	0.4
	50
	100
	FALSE
	30
	1
	6
	2000
	count cooperative-cows
	1181

	7
	3
	
	
	
	
	
	
	
	
	
	
	
	2000
	count greedy-cows
	0

To get the data into a more usable format, I want to move the count-greedy-cows number up onto the previous line in a new column on the right. In cell R2 I put the formula =Q3. I put the same formula in Q4 and then copy these two cells and autofill the rest of the column. Then, I notice that only the first of the two rows of data for each run includes a number for the parameter values (look under grass-energy, for example). This means that I’ll be able to sort the 2000 lines (1000 runs, two lines each). Sorting by this column and then the run number will get me the first lines of data isolated and in order and I can then throw away the others.

Sample Draft Writeup

	
	
	
	
	
	
	
	
	count cooperative-cows
	count greedy-cows

	run
	max-grass-height
	grass-growback-rate
	energy-cost-per-meter
	energy-cost-of-reproduction
	energy-level-for-reproduction
	stride-size
	stop-eating-grass-height
	[final]
	[min]
	[max]
	[mean]
	[steps]
	[final]
	[min]
	[max]
	[mean]
	[steps]

	1
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	2587
	815
	1767
	1
	1
	1177
	183
	1570

	2
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	1177
	183
	1570
	1
	1
	2135
	657
	1262

	3
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	2135
	657
	1262
	1
	1
	1545
	406
	1166

	4
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	1545
	406
	1166
	1
	1
	1834
	679
	1022

	5
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	1834
	679
	1022
	1
	1
	947
	202
	980

	6
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	947
	202
	980
	1
	1
	1329
	412
	948

	7
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	1329
	412
	948
	1
	1
	1199
	318
	897

	8
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	1199
	318
	897
	1
	1
	1276
	387
	888

	9
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	1276
	387
	888
	1
	1
	1110
	347
	881

	10
	20
	1
	15
	180
	100
	0.1
	4
	1
	1
	1110
	347
	881
	1
	1
	2491
	1029
	938

	11
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	2491
	1029
	938
	1
	1
	1951
	670
	897

	12
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	1951
	670
	897
	1
	1
	1523
	495
	769

	13
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	1523
	495
	769
	1
	1
	1899
	834
	731

	14
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	1899
	834
	731
	2
	2
	1175
	427
	626

	15
	20
	1
	15
	180
	100
	0.1
	6
	2
	2
	1175
	427
	626
	1
	1
	1621
	620
	626

	16
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	1621
	620
	626
	1
	1
	1304
	526
	614

	17
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	1304
	526
	614
	2
	2
	1169
	500
	612

	18
	20
	1
	15
	180
	100
	0.1
	6
	2
	2
	1169
	500
	612
	1
	1
	1110
	353
	586

	19
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	1110
	353
	586
	1
	1
	770
	237
	551

	20
	20
	1
	15
	180
	100
	0.1
	6
	1
	1
	770
	237
	551
	1
	1
	1288
	327
	701

Exam
Code Bits
Explain what each of the following bits of code do
	1

	 ifelse random 100 < percentage-cooperative-at-start
 [set breed cooperative-cows set color pink]
 [set breed greedy-cows set color blue]

	2

	set heading heading + 180

if breed = cooperative-cows [set heading 45 repeat 8 [fd 1]]

	3

	 if ((breed = cooperative-cows and
 height <= stop-eating-grass-height)
 or
 (breed = greedy-cows and height <= 0))
 [move]

	4
	hatch 1 [repeat 6 [fd 2 set heading heading + 60]]

Writing Code
Suggest NetLogo code to do the following
5. Declare a global variable called “percent-barren”

6. Give patches a variable called “time-since-had-grass”

7. Setup simulation by clearing everything and setting a patch variable called “grass-height” to a random number between 0 and 10.

8. Coloring turtles a shape of violet proportional to their heading variable (which is in degrees from 0 to 360)

9. Revise the above so that north is black, south is white and 0 to 180 is scaled from black to white and 180 to 360 is white to black (all in violet or purple)

[image: Image:Phase-diag.svg]Phase Diagrams
A phase diagram is typically a two dimensional picture of the states a system can pass through. The classic example is from physical chemistry where we have a pressure-temperature diagram and lines drawn to show the borders between different phases (solid, liquid, gas):
More generally, the idea is used in Mathematical Physics. A phase diagram or phase space is used to visualise the changes in a dynamical system.
“Every degree of freedom or parameter of the system is represented as an axis of a multidimensional space. For every possible state of the system, or allowed combination of values of the system's parameters, a point is plotted in the multidimensional space. Often this succession of plotted points is analogous to the system's state evolving over time” (http://www.upto11.net/generic_wiki.php?q=phase_space).
 (
Pink Cows
Blue Cows
)For our purposes, we’ll hold parameters constant and so the degrees of freedom are the outcomes or current state of the system – here, how many of each type cow. In the diagram to the left, the axes are count of blue (greedy) and pink (cooperative) cows. The red line is a trace of the system’s development over time. Both breeds are growing in population size, sometimes one faster, sometimes the other (hence the stair-steppy rise from left to right). At the top right of the graph the system seems to be cycling a bit. The number of blue cows levels off and the pink cows increase. Then the blue cows decrease and the pink level off. Then there is a drop in pink cows followed by a rise in blue cows. Visually, we get the impression that the system is spiraling toward a fixed number of blue and pink cows. If it did, we’d call it a stable equilibrium point.
Describe what is happening in each of the phase diagrams below
	 (
Pink Cows
Blue Cows
)
	10.		
		
		
		
		
		
		
		

	 (
Pink Cows
Blue Cows
)
	11.		
		
		
		
		
		
		
		

	
	

	 (
Pink Cows
Blue Cows
)
	12.		
		
		
		
		
		
		
		

13. Plot the following data on the graph paper on the next page.
	Time
	Blue
	Pink
	
	Time
	Blue
	Pink

	0
	0
	0
	
	11
	20
	35

	1
	1
	10
	
	12
	10
	45

	2
	2
	20
	
	13
	5
	50

	3
	3
	35
	
	14
	10
	55

	4
	5
	65
	
	15
	15
	50

	5
	20
	50
	
	16
	20
	42

	6
	30
	35
	
	17
	25
	37

	7
	40
	25
	
	18
	30
	32

	8
	50
	5
	
	19
	35
	27

	9
	40
	15
	
	20
	40
	22

	10
	30
	25
	
	
	
	

[image:]
[image:]14. After about 500 time periods, a world starts to look like this. Describe the general difference in appearance between the pink and the blue clusters. Given what you know about their behavior, can you describe what’s going on to produce these different patterns?
	
	
	
	
	
	
	
	
	
	

Wilensky, U. 1998. "NetLogo Cooperation model." Evanston, IL.: Center for Connected Learning and Computer-Based Modeling at Northwestern University.

Survival of Coop Cows
Stride-Length 0.1	4	6	8	10	1138.0999999999999	671.3	487	352.1	Stride-Length 0.2	4	6	8	10	619.70000000000005	391.3	226.8	187.9	Stride-Length 0.3	4	6	8	10	441	230.3	167.7	138.19999999999999	Grass Height Coop Cows Stop At
image3.emf

image4.png
A4+4B v
ey JoL4 K
DB~ 3

YEOXx©®
AA®FDX

image5.emf
-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800

coop

greedy

image6.png
>

Fle Edt Toos Zoom Tabs Help

nterfoce | Inormation] rocedures|

=loix|

W1 el R | e -1 1l
Button | sider | swich | Chooser | monior | rlat | output | Text
Y44 mmmmmm— > 3 [ean | o]
E=as) basic sliders: -1
e
intikcos 20 | srdedength
—
cooperativeprobabity 050 || metabolsm___6.0
——
veproduction-cost EXd
—
veproduction threshold 1020
Cows over time Pens
100 Dlcosperative
Boresdy
£
I —
| advanced sliders:
o Tine. 10 dvanced sic arass-eneray 5.0
T
hghgromth-chance 77,0 | maxcorasheght 10
— I
lowgronthvchance 30,0 | lowhighthreshold 5.0
I |
[Command Center P

observers|

(NSNS

image7.png
]

Fle Edt Toos Zoom Tabs Help

nterfoce | Inormation] rocedures|

I P o 2 I P

%45 mmm— >

setu o o
Pl basi sders: ® 2

intial-cows 20 | stride-length 0.0

cooperative-probabity 050 | metabolsm 6.0

Teprocion ozt 540

— —

eprodiction theshod 1020

Cons over tme Fers
w25 Dlccoperative
[T
£
0 I —
achonced siders

0 Time: 148 el o B0
——
Hghgromivahonce 7.0 | macorasshegnt 10
T — | | ——
lowgrontirchance 0.0 | bwhighihiestod 50

(Command Center o o

aoservers]]

image8.png

image9.emf

image10.emf

image11.emf

image12.png
solid phase

Pressure

liguid

critical pressure
Por

liguid
phase

Po triple point

gaseous phase

T

compressible

supercritical fluid

critical point

superheated vapour

critical
temperature
Ter

Temperature

image13.emf
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Pink

Pink

image14.emf

image1.png
||

=lol

L =)
tch | Chooser | Mani

swech| chos
%4> 5 [mmmm— > 8 eon] a0

image2.png
ary
red
orange
brown
yellow
green
Time
turquoise
oan

sky

blue =
violet =
magenta =

pink

105

s

125

135

125

134 135

16 117
126 127

136 137

18

%

8

%

58

&

%

108

18

128

138

white

19

2

3

a

£

6

7

8

%

109

19

129

130

99

99

199

209

309

09

599

699

799

09

99

1099

1189

1209

1399

